
Computer Science
and Technology

NBS Special Publication 500-155

Management Guide to

Software Reuse

William Wong

U.S. Department
of Commerce

National Bureau
of Standards

A111Q2 fiDfifiSE

NATL INST OF STANDARDS & TECH R.I.C.

A1 11 02808852
Wong, William/Management guide to sottwa

QClOO .U57 NO.500-155 1988 V19 C.I NBS-P

TM he National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall

goal is to strengthen and advance the nation's science and technology and facilitate their effective application for

public benefit. To this end, the Bureau conducts research to assure international competitiveness and leadership of U.S.

industry, science arid technology. NBS work involves development and transfer of measurements, standards and related

science and technology, in support of continually improving U.S. productivity, product quality and reliability, innovation

and underlying science and engineering. The Bureau's techmcal work is performed by the National Measurement
Laboratory, the National Engineering Laboratory, the Institute for Computer Sciences and Technology, and the Institute

for Materials Science and Engineering.

The National Measurement Laboratory

Provides the national system of physical and chemical measurement;

coordinates the system with measurement systems of other nations and

furnishes essential services leading to accurate and uniform physical and

chemical measurement throughout the Nation's scientific community,

industry, and commerce; provides advisory and research services to other

Government agencies; conducts physical and chemical research; develops,

produces, and distributes Standard Reference Materials; provides

calibration services; and manages the National Standard Reference Data

System. The Laboratory consists of the following centers:

• Basic Standards^

• Radiation Research
• Chemical Physics
• Analytical Chemistry

The National Engineering Laboratory

Provides technology and technical services to the public and private sectors

to address national needs and to solve national problems; conducts research

in engineering and applied science in support of these efforts; builds and

maintains competence in the necessary disciplines required to carry out this

research and technical service; develops engineering data and measurement
capabilities; provides engineering measurement traceability services;

develops test methods and proposes engineering standards and code

changes; develops and proposes new engineering practices; and develops

and improves mechanisms to transfer results of its research to the ultimate

user. The Laboratory consists of the following centers:

• Applied Mathematics
• Electronics and Electrical

Engineering^
• Manufacturing Engineering
• Building Technology
• Fire Research
• Chemical Engineering'

The Institute for Computer Sciences and Technology

Conducts research and provides scientific and technical services to aid

Federal agencies in the selection, acquisition, application, and use of

computer technology to improve effectiveness and economy in Government
operations in accordance with Public Law 89-306 (40 U.S.C. 759),

relevant Executive Orders, and other directives; carries out this mission by
managing the Federal Information Processing Standards Program,
developing Federal ADP standards guidelines, and managing Federal

participation in ADP voluntary standardization activities; provides scientific

and technological advisory services and assistance to Federal agencies; and
provides the technical foundation for computer-related policies of the

Federal Government. The Institute consists of the following divisions:

Information Systems Engineering

Systems and Software

Technology
Computer Security

System and Network
Architecture

Advanced Systems

The Institute for Materials Science and Engineering

Conducts research and provides measurements, data, standards, reference

materials, quantitative understanding and other technical information

fundamental to the processing, structure, properties and performance of

materials; addresses the scientific basis for new advanced materials

technologies; plans research around cross-cutting scientific themes such as

nondestructive evaluation and phase diagram development; oversees

Bureau-wide technical programs in nuclear reactor radiation research and
nondestructive evaluation; and broadly disseminates generic technical

information resulting from its programs. The Institute consists of the

following Divisions:

• Ceramics
• Fracture and Deformation'
• Polymers
• Metallurgy

Reactor Radiation

'Headquarters and Laboratories at Gaithersburg, MD, unless otherwise noted; mailing address

Gaithersburg, MD 20899.

^Some divisions within the center are located at Boulder, CO 80303.

^Lxxated at Boulder, CO, with some elements at Gaithersburg, MD

Computer Science
and Technology

NBS Special Publication 500-155

Management Guide to

Software Reuse

William Wong

Systems and Software Technology Division

Institute for Computer Sciences and Technology
National Bureau of Standards

Gaithersburg, MD 20899

Research Information Center
National uureau of Slandanls
Gaithersburg, ^Maryland 20y99

Q-Cioo

April 1988

U.S. DEPARTMENT OF COMMERCE
C. William Verity, Secretary

National Bureau of Standards

Ernest Ambler, Director

Reports on Computer Science and Technology

The National Bureau of Standards has a special responsibility within the Federal Government for com-

pjter science and technology activities. The programs of the NBS Institute for Computer Sciences and

Technology are designed to provide ADP standards, guidelines, and technical advisory services to im-

prove the effectiveness of computer utilization in the Federal sector, and to perform appropriate research

and development efforts as foundation for such activities and programs. This publication series will report

these NBS efforts to the Federal computer community as well as to interested specialists in the academic

and private sectors. Those wishing to receive notices of publications in this series should complete and

return the form at the end of this publication.

Library of Congress Catalog Card Number: 88-600528
National Bureau of Standards Special Publication 500-155

Natl. Bur. Stand. (U.S.), Spec. Publ. 500-155, 38 pages (Apr. 1988)
CODEN: XNBSAV

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1988

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington DC 20402

CONTENTS

PREFACE 1

1. INTRODUCTION 2

2. THE SOFTWARE CRISIS 3

3. THE NATURE OF SOFTWARE REUSABILITY 4

4. THE SOFTWARE REUSE PROCESS 5

4.1 Levels Of Reusable Software Information 6

4.2 Reusable Software Classification 9

4.3 Software Commonality 10
5. ADVANTAGES OF SOFTWARE REUSE 11

5.1 Productivity 12
5.2 Quality 12

6. DIFFICULTIES IN SOFTWARE REUSE 13
6.1 A Software Professional Viewpoint 14
6.2 A Software Managerial Viewpoint 14
6.3 A Cognition/Cultural Viewpoint 15

7. FEASIBILITY OF SOFTWARE REUSE 16
8. THE ROLE OF PROTOTYPING IN SOFTWARE REUSE 21
9. REUSABILITY AND SOFTWARE ACQUISITION 22
10. SOFTWARE PORTABILITY 23
11. SUMMARY 24
REFERENCES 27
GLOSSARY 3 0

FIGURES

FIGURE 1. - Three Levels of Reusable Software Information ... 6

FIGURE 2. - List of Each Package and Its Commonality Index .. 11

FIGURE 3 . - Feasibility of Software Reuse 18

ill

ABSTRACT

This document, the second in a series on software reuse, focuses
on the improvement of productivity and quality of software as
well as the reduction of software risks. Software reusability
can provide substantial economic benefits. Initial reusability
efforts should emphasize an understanding of the concept of
software reuse, and encourage the use of existing well-developed
software specifications, designs, methods, techniques, tools, and
other reusable information. This report presents general
management guidance in software reuse. While there is no magic
solution to the problem of achieving the goals of software reuse,
the report discusses various aspects, problems, issues, and
economic reasons of software reuse, and identifies those
techniques and characteristics which will assist management in
improving software reuse.

KEYWORDS

Domain knowledge; reusable software library; software
acquisition; software classification; software commonality;
software component; software factory; software management;
software portability; software reusability; software reuse;
software risks.

iv

PREFACE

The Institute for Computer Sciences and Technology (ICST) of the
National Bureau of Standards (NBS) , has a responsibility under
Public Law 89-306 (Brooks Act) and Public Law 100-235 (Computer
Security Act) to promote cost effective selection, acquisition,
and utilization of automatic data processing resources within the
Federal Government. ICST efforts include research in computer
science and technology, technical assistance, and the development
of standards and guidelines for computer and related
telecommunication systems. ICST is developing a series of
software reuse reports designed to assist Federal agencies in
improving software productivity and quality as well as
controlling software development and maintenance costs.

This report is the second publication issued in this area. The
first report, "A Management Overview Of Software Reuse", NBS
Special Publication 500-142 [W0NG86], was issued September 1986.
NBS-SP 500-142 was designed to be used as a reference document.
This report discusses various aspects, problems, issues, and
economic reasons of software reuse, and identifies those
techniques and characteristics which will assist management in
improving software reuse.

1 . INTRODUCTION

One of the most effective means of improving the productivity of
software development would be to increase the proportion of
software which is reused. Reusable software would not only-
increase productivity, but would also improve the reliability of
software and reduce development time and cost. However, there are
many technical, organizational, economic, cultural, and legal
issues to be resolved before widespread reuse of software becomes
a reality.

The basic causes of increased software costs include the
explosive growth in size, complexity and increasing criticality
of modern software systems, and rising personnel costs. Software
costs for both development and maintenance are largely related to
the labor-intensiveness of the process and the inadequate use of
available technology.

Before addressing the technical and economic reasons why software
should be reused, it is important to gain a perspective on recent
advances in the state-of-the~practice. It is often argued that
software reuse is feasible, since hardware reuse has been
successful. However, this analogy is not as straight forward as
it may appear. Hardware tends to be relatively simple, or
consists of replicated logic elements, while software must deal
with substantially more complex application issues. In addition,
hardware primitive components have had a much longer time to
stabilize. It takes years between the initial engineering
release of a hardware component and its subsequent widespread
commercial use. Software has yet to gain the benefit of this
maturing process, and thus still displays a higher degree of
variability [GRAB84].

Current software management concerns have focused on how to
reduce software development and maintenance costs, the need for a
standard operating system interface, an automated programmers'
support environment, automatic programming by a computerized
software factory, reusable software libraries, and organization-
wide software development and configuration management guidelines
and standards. Each of these represents promising innovations
with major payoff potential over the next five to ten years
[SILV85] . However, immediate software cost savings and software
programmer productivity improvements could be gained simply
through small changes in the way software projects and knowledge
are managed.

A common misconception of software reuse is that it is limited to
the use of existing source code. Software reuse should be
broadly defined as the reuse of any information that may be
collected and later used to develop other software. This
definition includes reuse of available software requirements.

2

specifications, system design, source code, modules, operating
systems, documentation, analysis data, test information,
maintenance information data bases, and software development
plans and methodologies. The reuse of automated tools for
generating software, a well-designed reusable software library
for classifying and retrieving various error-free software
components, and an integrated software support environment to
improve software lifecycle processes are also part of the scope
of software reuse efforts.

This report is organized into eleven sections. Section 2

describes the software crisis. Section 3 discusses the nature of
software reusability. Section 4 presents the software reuse
process. Section 5 addresses advantages of softv/are reuse.
Section 6 discusses difficulties in software reuse. Section 7

presents feasibility of software reuse. Section 8 describes the
role of prototyping in software reuse. Section 9 addresses
reusability and software acquisition. Section 10 presents
software portability. Finally, Section 11 summarizes the
importance of software reusability.

2. THE SOFTWARE CRISIS

The problems in the development and maintenance of software have
increased rapidly over the past decade. There has been an
explosive growth in size, complexity, and critical nature of
modern software applications. There is also a lack of integrated
software development environment for supporting the software
lifecycle process. The inability to manage the complexity of
software often results in insufficient definition of requirements
and specifications, extended development time, and software cost
overruns

.

The software problem is not only the high software development
cost, but also the poor quality of software. In fact, many
organizations spend 60%-70% of their resources in maintaining old
software, which includes eliminating bugs and incorporating the
changes of requirements [FIPS106]

.

"A Management Overview of Software Reuse" [WONGS 6] published by
the National Bureau of Standards, discussed the following reasons
that software is costly:

1) Requirements of new software systems are more complex than
before. Almost every national defense system contains
embedded computer software which performs mission-critical
functions. These software systems have high performance
expectations which require the software to be highly
flexible and reliable.

3

2) There is a lack of professional training. The need to
train software professionals and end-users in new
technology is often overlooked. Training programs can
serve as a feedback mechanism for collecting information
from users about their experiences in adapting and using
these rapidly changing modern programming techniques and
practices

.

3) The demand for qualified software professionals exceeds
the number available. There is a growing shortage of
software professionals. The United States Air Force
(USAF) Scientific Advisory Board has estimated that the
demand for software professionals will continue to exceed
available resources. There is and will be a substantial
shortfall of qualified software professionals if remedial
measures are not taken [USAF83, BOEH82]. As a result, the
difficulty of developing quality software will continue to
rise.

4) There is only limited use of software development tools
and methodologies. Existing software development tools
and methodologies have not been widely adopted and used to
develop and maintain software. Many software managers do
not know what kind of information is currently available
for improving the traditional software lifecycle
processes. It is difficult for them to identify the
information needed for selecting the right tools and
methods without the appropriate information management
techniques. As a result, software productivity has only
increased an estimated 3%-8% per year [HOR084]

.

3. THE NATURE OF SOFTWARE REUSABILITY

A common misconception of software reuse is that it is limited to
the use of existing source code. There is, however, a wide
variety of approaches that address software reusability.
Reusable software includes any information that may be collected
and later used to develop other software. Reusable software
includes available software development methodologies, software
requirements, specifications and designs, source code, modules,
documentation, analysis data, test information, and maintenance
information data bases. The reuse of automated tools for
generating software and a software support environment to improve
software lifecycle processes are also part of the effort in
software reuse [WONGS 6]

.

The use of subroutine libraries and off-the-shelf software are
the most common examples of reusing existing software. For many
commercial applications, modestly priced packages are available
which can be incorporated into a software system. Similarly,

4

well-developed existing packages for scientific, government,
aerospace, and mission-critical applications are available.

Some good examples of software reuse are:

1) "a study done by the Missile System Division of the
Raytheon Company reported that 4 0%-60% of actual source
code was reused in more than one software system
[HOR084] .

"

2) "85% reuse factors have been reported in Japanese software
factories [STAN83]."

3) "60% of the design and code on all business applications
is reusable [LANE84]."

4) "one reason for the wide and rapidly growing popularity of
the UNIX (a registered trademark of AT&T) system is that
its design philosophy is based upon reusability. UNIX
succeeds in the area of reusability because of the low
perceived complexity of its interface (i.e., files and
pipes) . The actual interface is complicated because most
of the details are hidden away in the environment
[MUSA85] .

"

5) "75% of program functions are common to more than one
application, and only 15% of the source code found in most
programs is unique and novel to a specific application
[JONE84] .

"

6) "reuse has a place in the creation of some very complex
systems, it indicates that 12 of 16 software programs
involving satellites were based on 68%-95% of the existing
software which have the potential for reusability at
NASA's Goddard Space Flight Center [NISE85]."

While these examples indicate the possibilities of successful
reuse, the state-of-the-practice has not adequately taken
advantage of these opportunities in order to make widespread
software reuse a reality.

4. THE SOFTWARE REUSE PROCESS

Software reuse is the use of previously acquired concepts or

objects in a new situation. Actually, reuse is a continuous
matching process between new and old situations, and, when
matching succeeds, duplication of the same actions. The

iterative refinement process of a software development lifecycle
can be viewed as another effective way of reusing existing

software. In this notion, reusability evolves as an iterative

5

process of refining requirements, specifications, design,
programming, testing, and implementation throughout the software
lifecycle to meet the users' needs. It is necessary that the
software development lifecycle process become fully automated in
the future, making the rapid prototyping approach to software
development through reuse and maintenance truly feasible. This
automation based software development environment approach will
provide an integrated set of tools that directly supports
software programmers with the "corporate memory" of knowledge as
well as system requirements and specifications, design, testing,
implementation, and maintenance processes [BALZ83].

4 . 1 Levels Of Reusable Software Information

It is important software reuse be viewed as the reuse of any
information that may be collected and later used to develop other
software. This definition includes reuse of available software
requirements, specifications, design, source code, modules,
operating systems, documentation, analysis data, test
information, maintenance information data bases, software
development plans and methodologies. The reuse of automated
tools for creating software and an integrated software support
environment to improve software lifecycle processes are also
considered part of the reusable information. This software reuse
information can be categorized into three different levels, some
more amenable to reuse than others. Figure 1, summarizes these
levels of reusable software information.

FIGURE 1 - THREE LEVELS OF REUSABLE SOFTWARE INFORMATION

1) reuse of ideas
(e.g., specification, design, development
methodologies and techniques)

.

2) reuse of domain knowledge
(e.g. ,

documentation, technical textbooks,
plans, personnel, analysis data, test and
maintenance information data base)

.

3) reuse of particular components
(e.g., source code, subroutines, modules, operating
system, packages, programming languages, tools)

.

6

1) Reuse of Ideas - In civil engineering, reuse of ideas
consists of applying general engineering concepts such as
standard design equations for determining the dimensions
and materials of a beam. An example of how components are
reused is selecting the beam that best meets design
criteria from a set of standard beam shapes, cross
sections, and materials. In software engineering,
software requirements, specifications, design, development
methodologies and techniques are software development
ideas that can be reused to build a new system. Balzer
and Neighbors present examples of how to capture and reuse
an existing system to build a new application in the
software development process. If the process of
transforming a system specification to an executable
implementation can be recorded and replayed, then when the
requirements and specifications change, the implementation
can be generated by reusing the previous development with
slight changes. In order to effectively use this
approach, the software development process must be
systematically automated [BALZ83, NEIG83].

2) Reuse of Domain Knowledge - At present, the reuse of
domain knowledge or domain information is not widely
recognized. Some identify reuse of domain knowledge with
Artificial Intelligence (AI) technologies (e.g., knowledge
based systems) . However, domain knowledge which is
residing in a software programmer's head gets reused
frequently in every software application that is developed
or modified. Reuse of software personnel is a common way
of reusing domain knowledge. As Coron et al described in
their work, "domain knowledge can also be embedded in the
architecture of functional collections of a reusable
software library, an example is the set of libraries
available on the X-Windows System. The subroutines in
these libraries are arranged in a distinct hierarchy,
covering four levels of programming functionality such as
dialogs (the highest level) , field editors, intrinsics, X
library primitives (the lowest level) . Developers of
software applications using X-Windows reuse not only the
subroutines in the X and X-Ray libraries, they also reuse
a systematic technique for building windows which is

enforced by the architecture of the libraries [COR087]."
The creators of the libraries have succeeded in taking the
results from their domain analysis (i.e., the key concepts
and methods for developing an effective windowing system)
and embedding them in the structure of the libraries so

that they encourage the reuse of the results of the
analysis

.

7

Application generators can also be viewed as examples of
the use of domain knowledge. For well-established domains
such as report generation and language parsers, the basics
of generating applications in that domain are captured in
a tool, (i.e., the applications generator), and only the
application-specific details need to be supplied to use
the tool to generate the software.

Reuse of Particular Components - The use of subroutine
libraries and off-the-shelf software are the most common
examples of reusing existing software components. For
software component reuse to be attractive and successful,
the overall effort to reuse existing software components
must be less than the effort to create new software.
Before a software component is reused, it must be:

a) Identified J Located and Retrieved - Candidate software
for reuse must be found among all the reusable
components that are archived in the "software database
management system (SDMS)." The SDNS must present users
with a lucid classification scheme that appeals to
their intuition. Each candidate software component
must be specified in such a way that the software
developer is likely to be able to find it. A complete
match or a close match is made between component need
and a software component available in SDMS. The major
contributors are good specifications for identifying an
existing software component and an SDMS with a good
classification scheme.

b) Understood - Understanding a software component means
knowing what it does, how it does it, and how it can be
reused. What is the software component's function?
How reliable is its operational behavior and what are
the performance characteristics? What are the
environmental requirements and the interface through
which it is modified and incorporated into the software
under development?

c) Adapted - When the software component is being reused,
it must be able to be tailored or modified. Two
typical kinds of modifications are:

1- Making new entities (types) from old by modifying
the entity. For example, making a binary sort
routine from a binary search routine by adding
functionality to the search;

2- Making new instances of types. For example,
instantiating or making specific Ada (a registered
trademark of the U.S. Government, AJPO) generics
with parameters that particularize it for the

8

software in which it is included. Changing
parameters is preferable to changing source code to
make a new entity or new instance. Source code
should be tailored from the outside using parameters
[DIAZ86]

.

4 . 2 ReusaJsle Software Classification

The effectiveness of software reuse depends upon the ability to
locate and retrieve an appropriate software component from a
large collection of components in a well-designed and well-
documented reusable software library. A classification scheme is
a domain knowledge structure that organizes collections of items
to satisfy the needs of the software developers to be able to
reuse an existing component for building a new system.

Classification is the act of grouping like things together. All
members of a group or class produced by classification share at
least one characteristic which members of other classes do not
possess. Classifications display the relationships between
things, and between classes of things and the result is a network
or structure of relationships which may be used for many
purposes. Classification is a fundamental tool for the
organization of knowledge. A library is an example of
classification where a collection of reusable information has
been organized for easy access and retrieval.

Reusable software can be classified in terms of: size, life cycle
phase product, the domain of applications in which the software
will be reused, or the originating organization [GRAB84]. The
amount of successful reuse is dependent upon the users' awareness
of its existence and the domain of its applicability. Thus, it
will be important for the reusable software library developer to
provide the capability of retrieving various software components
in different applications. The developer must not only build the
attribute of wide applicability into the library, but also must
communicate this attribute to the users of the library system.

Some of the obvious pitfalls that can diminish the economic
benefit of software reuse include:

1) Wide applicability is built into the library, but that
attribute is not communicated to the user through the
library classification system.

2) A library is designed that has wide applicability over a

narrow domain of applications, but could have been designed
to cover other application areas.

9

3) A library is designed that has narrow applicability, but
could have been designed to have wider applicability either
over a single application area or over many application
areas

.

Proper design and classification is imperative. Narrowing of the
domain of applicability will lead to the proliferation of
software modules with the resulting increase in cost along with
the unnecessary complication of the reusable software retrieval
system.

If a software package is classified as application-specific, the
likelihood of the package being applied outside of that domain
will be small. For example, software classified in the domain of
accounting will likely be used only for accounting. As reusable
software libraries are established, it is important that software
placed into these libraries be designed with as large a domain of
applicability as possible.

4 . 3 Software Commonality

The more times a software component is used, the more economic
benefit can be gained. The degree of reuse depends upon the
domain of applicability of that software. The wider the
applicability either across many different applications or within
a single application, the greater the possibilities for reuse.
Classification systems for application software reuse can be
applied across two domains:

1) Degree of commonality within an application area, and

2) Degree of commonality across application areas.

An application area is a distinct business or industrial
grouping. For example: missiles, aircraft, spacecraft, weapons,
ships, lasers, command/control, radar, business accounting,
finance, education, payroll, medicine, etc. Software in any of
the above domains is a good candidate for software reuse. The
objective is to design software packages that will increase the
amount of software reuse. The design process should, explore the
possibility of expanding the capability from a specific
application area to a broader domain so that software can be
reused across many application areas. Figure 2, presents an
example of a software package commonality index for a spacecraft
system [NISE86] . The higher the index, the greater the domain of
applicability that is predicted. The scale goes from 0 to 6 with
0 yielding the least commonality (i.e., degree of reuse is low)
and 6 yielding the most (i.e., degree of reuse is high).

10

FIGURE 2 - LIST OF EACH PACKAGE AND ITS COMMONALITY INDEX

Function Degree
of

Commonality

Function Degree
of

Commonality

sort 6
data structure 6
abstract processes 6
computer system 6
software maintenance 6
math functions 5
geometric functions 5
matrix functions 5
vector functions 5
process functions 5
communications 5
guidance functions 4
navigation functions 4
telemetric functions 4
computer languages 4

software design 4

software development 4

software verification 4

mission function 2

input routines 2
output routines 2
system functions 0
warhead control 0
system inputs 0
system outputs 0

Reprinted from "The Design For Reusable Software Commonality"
[NISE86]

.

5. ADVANTAGES OF SOFTWARE REUSE

The degree of benefits from software reuse depend on the
complexity and size of the software product and the differences
between the old and new applications. The more complex a
software system, the higher the anticipated cost to reuse it.
Because a significant effort will be required to understand the
structure and function of the system, modifications required to
reuse a complex system will be more difficult. Debugging the
modifications will be costly. Systems based on well-designed,
well-tested, and well-documented reusable software, in principle,
should cost less and contain fewer defects because the software
has successfully been tested and used. If a software component
is reused several times, the incremental cost of creating and
cataloging it can be amortized over the number of times it is
used. Similarly, there is benefit in reusing well-developed
specifications, designs, tools, analysis data, and support

11

environitients . Effort to achieve software reusability can be seen
as a capital investment. Improving productivity and quality are
two main advantages in reusing existing software.

5 . 1 Productivity

Reusing well-designed, well-developed, and well-documented
software improves productivity and reduces software development
time, costs, and risks. Examples of productivity improvement
include:

1) Software reuse "amplifies" programming capabilities
[B1GG84]. Reusing available software allows concentration
of resources on improving the software product. The
programmer has less work to do in developing a piece of
software when large portions of the software or design are
reused.

2) Software reuse reduces the amount of new documentation and
testing required, because the software component which is
known to be reliable decreases the potential of unforeseen
errors

.

3) When the system is developed based on reusable components,
it becomes easier to maintain and modify because the
software developers are more familiar with the reusable
components from which it is constructed, and they can more
rapidly understand the complete system design.

4) It often takes less time and effort to use an existing well-
designed, well-tested, and well-documented software
component than to attempt to rewrite it.

5.2 Quality

Improvements in the quality of software developed from well-
designed, well-tested, and well-documented reusable software
components can be attributed to:

1) Software components that are designed to be reused.

2) Documentation which is developed according to established
organization-wide software standards. This results in
software that is well understood and likely to be used
appiropriately

.

3) Software components that are well tested and certified for
reuse. The more software is reused, the greater the
probability that errors will already be found and corrected.
It can also reduce future maintenance efforts.

12

4) Software development based on well-designed, well-tested,
and we11-documented reusable software offers opportunities
for increased system performance when frequently used
software components are transported into new systems.

6. DIFFICULTIES IN SOFTWARE REUSE

Although the concept of reusable software appears attractive from
both economic and technical view points, it represents a major
deviation from the traditional approach to software development.
Effective software reuse may involve substantial up-front
investment in order to lay the basis for future gains. It may be
initially difficult to implement in an organization. As
previously indicated, many technical, organizational, cultural,
and legal issues make reusing software difficult. These issues
include:

1) The specifications of the software are either non-existent
or sufficiently ambiguous so that it is not possible to
determine exactly what the software does without
understanding all of the source code.

2) The cost of changing the software to perform the specific
function is greater than the cost of writing new software.

3) Although the software to perform the specific function may
exist, nobody on the project knows about it or those who
know of its existence don't know how to find it.

4) Software that can perform the required task is available,
but it is so general that it is too inefficient for the
task.

5) Lack of organization-wide standardization makes it extremely
difficult to share software with confidence.

6) Lack of a standard data interchange format limits both
sharing data among applications and systems reusability.

7) Organizational liabilities and data rights are significant
issues which impact the concept of software reusability. If

not classified and managed properly, legal concerns
regarding data rights and liabilities may heavily affect
software lifecycle management and development.

13

6 . 1 A Software Professional Viewpoint

This section addresses both technical and cultural biases of why
software programmers resist using someone else's code or design.
The technical issues focus on the lack of well-designed, well-
developed, well-documented, reliable reusable software component
libraries and the lack of an integrated software engineering
environment to support software development efforts throughout
the entire software lifecycle. On the cultural side, the issues
focus on the lack of confidence in reusing someone else's code
and the doubt that software which is developed by another person
or organization, for another system can be reused in a new system
without any modifications. These issues include:

1) It is easier to write it oneself, than to try to locate it,
figure out what it does, and find out if it works. If it
has to be modified, then it also might be faster to write it
from scratch.

2) There are few tools to help find components or compose a
system from the reusable parts.

3) There are few software development methodologies that stress
reusing code, let alone reusing a design or a specification.

4) It is more fun to write it oneself.

5) It would imply a sign of weakness not to be able to do it
oneself.

6) "It is not my code". This is part of the "Not Invented Here"
(NIH) syndrome.

7) There was no consideration by the system analyst, who
specified the system, that portions of an existing system
could be salvaged and reused.

8) There is little emphasis and little taught in academia on
reusing software.

9) The source code or tool in question is not supported. If a
bug is found, no one will take the responsibility to fix it.

6.2 A Software Managerial Viewpoint

Managers often make decisions based on more than just technical
issues. Organizational and cultural issues are part of the policy
making process. Many managers have little incentive to reuse
existing software because they feel threatened with potential

14

cuts in budgets and resources due to the payoffs of software
reusability. Reasons for not adopting a reusable software
approach include:

1) If no tools or components exist, then it will take time and
manpower to create the tools and components, and to gain the
expertise in their use. Such costs are generally not within
the budget of a single project.

2) If special tools (e.g. application generators, or
preprocessors) are used to create a program, then a customer
might expect these tools to be delivered along with the
product for maintenance purposes.

3) If the tools do exist for making programmers more
productive, then this will make the project dependent on
fewer personnel. Any reduction in staff might be perceived
as reducing the manager's "empire".

4) If a defect appears in a program developed using reused
components, who is legally responsible for damages?

5) If there are no standards to control what is entered into
the reusable components library, then time and money must be
spent setting and maintaining the standards for the library.

6.3 A Cognition/Cultural Viewpoint

Computer programming is simply one form of problem solving.
Understanding the merits of existing programming paradigms from
the perspective of cognitive psychology has provided valuable
insight in dealing with complexity [TRAC79] . There is a strong
need for a proper software development environment to facilitate
the reusable software engineering paradigm. Tools and training
must be available to deal with system complexity and assist the
software developer in finding and understanding what reusable
software components exist. A summary of the evidence gathered as
it applies to reusable software follows:

1) The data a person can manipulate consciously at one moment
in time is limited to 5 to 9 pieces of information [MILL56]

.

This limit on complexity can be overcome by proper
integration or modularization of components (i.e., by
collecting units of information into semantically meaningful
pieces or packages) . This argument also supports
information hiding and object-oriented design [PARN83].

15

2) Experienced programmers develop applications through
recursive mental process of matching pieces of the problem
with solution segments with which they are familiar.
Therefore, portions of designs are reused each time a piece
of software is written.

3) Internal conceptualization of the knowledge base in which
program/design segments reside tends to evolve, with
experience, toward a uniform content for all programmers.
In other words, experienced programmers tend to think alike
and express their solutions in similar forms [TRA.C87].

4) Programmers cannot reuse something they don't understand.
Furthermore, expert programmers follow certain explicit
rules of discourse regarding naming conventions and
programming style which enhance program read ability and
comprehension. This implies that for something to be
reused, it has to be designed, developed, and documented
according to an accepted set of software development
standards [TRAC87].

7. FEASIBILITY OF SOFTWARE REUSE

During the last several years, there has been increasing interest
in making software reusable. However, due to a number of factors,
only limited success has been achieved. Managerial and cultural
problems are the major stumbling blocks. On the technical side,
part of the issue centers around the large differences between
"code reusability in the small" and "code reusability in the
large" issues including programming practices, location of
reusable components, standard design, and the strong protection
of proprietary software.

Even if the reuse of a software component is valuable, its reuse
may not be feasible. In considering the feasibility of software
reuse, both technical and organizational aspects should be
examined; management incentives must be provided, problem areas
defined, sufficient personnel supported, and the viability of
reuse among differing versions of the same system considered.

As Wegner states: "Reuse of a component in successive versions of
an evolving program appears to be a more important source of
increased productivity than reuse of code in different
applications. Components are rarely portable between
applications and even if they are, the incremental benefit of
using a component in two applications is only a factor of two.
But the number of versions of a system over its lifetime can
number in the hundreds or thousands [WEGN8 3]."

16

It is important to recognize the basis for the concern about the
viability of component (source code) reuse across applications.
Across applications in this context means applications which are
at least somewhat dissimilar, as opposed to derivative versions
of an application such as a specific version of an accounting
systejn tailored to a particular customer.

It is generally agreed that application generators are capable of
developing custom-tailored programs within a well-defined
application area such as business accounting systems. The
problem with component reuse arises as the application areas
become complex and ill-defined, and as organizational boundaries
are crossed. The former makes it difficult to specify exactly
what is needed from each component with sufficient precision to
ensure that a reused component is, in fact, what was needed. In
terms of crossing organizational boundaries, the "reuse" of
project personnel who are familiar with the software components
and their roles and limitations, is important.

Soured code reuse is perhaps the most difficult form of reuse.
The reuse of high-level software (i.e., requirements,
specifications and high-level design) should be easier, since the
high-level software is unlike source code that is usually closely
related to hardware and operating system characteristics. Source
code reuse consequently is much more difficult to describe and
reuse. As Balzar pointed out, "Previous implementations will not
be the basis for reusability. They will not be gathered into
libraries to be reused. All such attempts (with the exception of
mathematical subroutine libraries) have failed and continue to
fail because even with our most sophisticated forms of
parameterization, the implementations are far too instantiated to
mesh with the potential uses. We have no technology to
characterize the set of "small" changes to functionality and/or
environment that arise in these potential uses [BALZ83]." A
survey of reusability performed by [CHAN83] identifies instances
of feasible software reuse:

1) "Most of the successful instances of software reuse in
industry involved similar, well-defined application
problems. They used the same operating system and hardware.
Some identified projects were able to reuse entities even
though the applications were substantially different. In
most situations, the functions or program units tended to be
too closely linked to the specific application to be
reusable across different applications."

2) "Most instances of reusability were achieved on the
specification level (by matching of interfaces) and on

design level (by expressing the design in a sufficiently
abstract design language)."

17

3) "It was easier to achieve reuse at the application level
than within the operating system. Application reuse was
amplified considerably by common operating system and common
hardware"

.

4) "In many cases reusability across projects was achieved
because all or some of the key people worked on both
projects"

.

The observations made above are summarized in Figure 3

.

FIGURE 3 - FEASIBILITY OF SOFTWARE REUSE

1) software reuse across organizational boundaries should be
confined to a well-defined problem area;

2) software reuse among different versions of the same system
is more viable than reuse among different application
areas

;

3) the wider the application area, the higher level of reuse
(e.g., reuse across organizational boundaries should
probably be higher than the code level)

;

4) an integrated development environment must be common among
those who reuse the same components;

5) reusability across project boundaries is often only
possible when some or all of the key people have worked on
both projects;

Factors that affect software reusability include:

1) Size and complexity of the software component - As the size
and complexity of the software component increases, the
feasibility of reusability decreases. Small, simple
software components are usually easier to design, test, and
maintain than large, complex components.

18

2) The lifecycle phase which the component represents - As the
lifecycle phase of the component approaches implementation,
the feasibility of reuse usually decreases. It is likely
easier to reuse a requirements document than to reuse source
code. Source code has more elements associated with it
(e.g., operating system, utilities, parameter, interfaces,
standards routines) than the high-level abstractions used in
a requirements document.

3) Domain of application - The domain of applications in which
the software is to be reused determines how well-defined and
how flexible the software component must be. If the
software component is used within a narrow domain of
applications where terminology and assumptions are well
understood, the definition of the software component need
not be exceptionally rigorous. However, when the domain of
applications is broad, the software component must be very
rigorously defined, since the terminology and assumptions
will be more varied and less well-known.

4) Organizational boundaries - The number of "organizational
layers" that separates the person who reuses a software
component from the person who initially developed the
component can affect software reuse. Examples of this
boundary include "within the same division in an
organization", "between sections of the same organization",
or "between different organizations". In general, the more
organizational layers between the software component creator
and the reuser, the greater the difficulty in reusing that
software.

Circumstances under which software has been successfully reused
include:

1) Small Software Project - A majority of the software
developed in an organization is written by individuals or
small teams of software programmers associated with a single
project. Software is reused for the following reasons:

a) It was written by a person who is reusing it.

b) It was written by another person in the project.

c) An application is being developed where a previous
version or a similar program is available.

19

d) The software is for a function that:

- is well understood;
- has only a few data types;
- relies on a stable underlying technology; and
- has standards within the problem domain (scientific

subroutines are examples of this type of software)

2) Software Factory Approach - The Japanese have taken a
different approach to programming. Instead of software
development, they view it as software production. They cite
programming productivity increases because:

a) They have established a critical mass in the number of
reusable components and programmers available to use and
develop them [JONE84].

b) They have taken the separate phases of the software
development process and assigned them to different
organizations within the software factory.

c) They have developed an integrated set of tools and
standards to support reuse in the software development
lifecycle. Because of the large number of software
programmers using the tools, their initial development
cost can be economically justified [JONE84].

d) Software reuse is part of their training process. One
software factory gives programming exercises each month
to all its software programmers. These exercises require
referencing the reusable software components library in
order to be completed with the minimum of effort
[TRAC87]

.

3) Reusable software components library - A well-designed
reusable software components library can substantially
improve software productivity and quality by increasing the
efficient reuse of error-free code for both new and modified
software systems. However, there are difficulties inherent
in selecting and effectively integrating reusable software
into new or existing software systems. There are a number
of critical issues to be addressed in developing large
libraries of reusable software components, such as
configuration and change control, quality assurance,
cataloging, documentation, data rights and liability.

20

8. THE ROIiE OF PROTOTYPING IN SOFTWARE REUSE

Prototyping is an iterative process for developing and refining
software requirements and specifications. It is "the building of
trial versions of software systems that emphasize the preparation
of immature versions that can be used as the basis for assessment
of ideas and decisions in preparation of a version that is
complete and deliverable [FISH87]." Prototyping offers a number
of attractive advantages, such as the early resolution of high-
risk issues, and the flexibility to adapt to changing
environmental characteristics or perceptions of users' needs.
Two major types of approaches to prototyping are referred to as
specification-driven and components-driven.

In specification-driven approaches, prototypes serve to make
requirements and design notions visible to system users and
software developers. The major objective is to improve and
refine the users' requirements and specifications. Evolving a
prototype to an operational system is a secondary objective, but
must not be mandated unless mature software component
repositories exist. The prototype often is thrown away after the
feasibility assessment is complete.

At the other end of the spectrum, the components-driven prototype
is expected to be an experimental model of the full scale
development system. The prototype is assembled with as many
existing components from a library and off-the-shelf packages as
possible. The objective is to determine what modifications to
the collection of components are needed in order to make the
production system acceptable to the users.

In practice, any software prototype development effort is between
the two extremes. In terms of reusability, prototypes have
multiple objectives. Rapid prototyping should be used if a

significant amount of the new software can be derived from the
reuse of existing software components. These prototypes can be
used to validate the current functional requirements and to
examine the system to see where payoffs can be realized through
optimization of high-frequency paths. Furthermore, there may be
several iterations of prototypes to address feasibility of the
sought-after system, to assess the attributes of components from
libraries, to analyze the interaction of reusable components, to
specify off-the-shelf software packages, and to determine the
shortfall of requirements to meet the users' needs.

An example of prototyping given by Guimaraes [GUIM87] describing
the prototyping practice of one Chicago bank provides a good
illustration of a throw away prototype:

21

"End users spent an average of 250 hours developing each throw
away prototype (primarily requirements definition) for a group of
six large applications. They then invested an average of 45
houts more per prototype on working with system developers to add
other procedures. The system development group itself expended
between 75 and 225 hours reusing what had already been done in
the prototype. Thus, the bank supported efforts that were
between 30% and 90% redundant".

The economic gains of employing evolutionary prototyping for
software development coupled with proper planning, tools. Very
High Level Languages (VHLLs) , discipline, methodology, and user
interfaces can substantially improve software productivity and
quality.

9. REUSABILITY AND SOFTWARE ACQUISITION

The primary objective of software acquisition is to identify
commonality of available software functionality, and to be able
to use these software components to develop timely, cost-
effective, reliable new software systems. The introduction of
well-designed, well-developed, and well-documented reusable
software into the software acquisition and development lifecycle
will change the current views and practices of the software
acquisition and procurement processes. Software management and
software developers can take advantage of existing software
components and then concentrate on software acquisition of the
unique requirements for developing new software systems. This
should result in better systems and shorten the software
development cycle.

In order to successfully acquire and adapt existing software,
incentives are required to foster the changes. If the benefits
of software reuse are to be realized, a "sustaining" software
development environment must be created that promotes the concept
of software reuse and encourages the use of available software
components. Explicit policy support and references to software
reuse in a Request For Proposal (RFP) and a Software Contract are
necessary to address the potential long term benefits available
from software reuse. The RFP should require software developers
to identify the extent of reusable software that is appropriate
for the target system, within acceptable development cost,
schedule, and risk level.

22

Major issues which impact the current software acquisition and
procurement practices include:

1) RFP and Software Contract must be structured so that
software reusability is explicitly addressed and
encouraged.

2) Software developers must address and show how development
costs and risks will be minimized by the selection of
reusable software in developing new systems in an RFP.

3) Contract review and monitoring of reusability activities
must be provided. Status review of software reuse must be
addressed throughout the entire software development
lifecycle.

4) Data rights and liability issues must be addressed and
managed properly between users and software developers.

5) Software developers should be encouraged and rewarded
when they meet software reuse goals and objectives by
using well-developed existing software when possible.

10. SOFTWARE PORTABILITY

Software portability refers to the ease with which a piece of
software can be transported to and reused in a different
environment without any modification. The adaptability of a
software component is defined by the ease with which its
properties can be modified.

A software component is portable if the effort required to
transport it is much less than the effort required for its
initial implementation and if it retains its initial qualities
after the transport. Software users are increasingly demanding
that specific software be portable because software has become
more and more expensive in comparison with hardware costs. It
should also be noted that the increasing complexity of software
systems has more often required that they be written in Very High
Level Languages (VHLL) . This factor has contributed greatly to
software portability.

Obviously, software portability increases flexibility and
reusability. Portability involves the consideration of

environmental factors such as hardware, operating system,
programming languages, interface with other software components,
etc. It is very expensive, in time and in other resources, to

recreate software for every new machine. It is important to know
how to design and build a piece of software, so that it can be

transported to other environments in order to facilitate reuse.

23

The advantages of designing and building portable software
include:

1) As software developers build and sell portable software,
they can appeal to a much wider market. Instead of
building new software for each possible computer
environment, it is in the developer's own interest to
reduce the effort needed to change from one environment
to another. The overall cost of developing portable
software, and then transporting and reusing it, is
preferable to rewriting the same software several times.

2) Since software is becoming more expensive than hardware,
its lifecycle must be made longer, that is, it must be
designed and developed to survive hardware changes.

3) Anticipation that a piece of software will be portable is
likely to have beneficial effects on its programming.
The coding will have to be cleaner, more systematic, more
disciplined, and more readable. Hence the reliability,
reusability, maintainability, and overall quality of the
software will be improved.

11. SUMMARY

Software reusability can provide substantial economic benefits.
Initial reusability efforts should emphasize understanding the
concept of software reuse, and encouraging the use of existing
well-developed software specifications, designs, methods,
techniques, tools, and other reusable information. Reusing well-
designed, well-developed, well-documented software can
significantly enhance the ability to develop timely, cost-
effective, reliable software systems.

The concept of reusable software is attractive from both
technical and economical points of view. However, it may be
initially difficult to implement in an organization. Many
technical, organizational, legal, and cultural issues must be
resolved. Software management must recognize the increasingly
critical and pervasive role of software, its characteristics, and
the software information management problems which must be
addressed. These major issues include:

1) Current views and practices of the software acquisition
and procurement processes must be changed so that
software reuse is explicitly addressed and encouraged.

2) Incentives must be provided to encourage reuse of
existing software.

24

3) Organizational liabilities and data rights issues
significantly impact the concept of software reuse. If
not classified and managed properly, legal concerns
regarding data rights and liabilities may heavily affect
software lifecycle development and management.

4) Most software programmers and managers tend to view
software reusability from the perspective of simply
reusing source code, whereas reusing other programming
artifacts (e.g., requirements, specifications, designs,
plans, tests, and methodologies) lead to more
productivity. Other reusability paradigms (e.g.,
application generators, translation systems. Very High
Level Languages (VHLLs) , automated tools, and automation
based software support environment) have proven
successful [TRAC87].

5) Meaningful, properly designed, tested, verified, standard
guidelines, and classified reusable software components
need to be developed before they can be reused.

6) Tools and training must be available to deal with system
complexity and assist software programmers in finding and
understanding what software components are available from
reusable software components library.

7) The feasibility of software reuse has been demonstrated
by the Japanese Software Factories partly because of the
concentration of software programmers (critical mass)
that maximizes their return on tool investment [JONE84].

8) Many software applications are common and generic. Such
source code is a logical target for standard functions,
and reusable modules [BIGG84].

9) Software can be transportable only if standardization and
reusability are goals and objectives in the original
design.

10) Criteria for accepting and retaining a software entity
for a reusable software components library (e.g.,
frequency of reuse and degree of reusability) must be
established.

11) Characteristics that promote reuse of software (e,g.,
generality, portability, modularity, independence,
maintainability, self-descriptiveness, and veriflability)
should be the basis for developing standards, techniques,
and measurements.

25

Effective software reuse requires a substantial investment up-
front in order to establish the basis for future gains. While
there is no magic solution to the problem of achieving the goals
of software reuse, this report provides general management
guidance in software reuse. Managerial problems should be
considered with technical concerns when an organization attempts
to reuse existing software. No matter how good the software
development methodology, managerial issues will often determine
the effectiveness and viability of a particular approach.
Therefore, software management and software professionals must
recognize the substantial economic benefits of software reuse,
and properly address and resolve the issues in order to make
widespread reuse of software a reality.

26

REFERENCES

[BALA83] Balzer, R. , "Evolution as a New Basis for Reusability"
Proceedings Workshop on Reusability in Programming

^

ITT Programming, September, 198 3.

[BIGG84] Biggerstaff, T. J., Perils, A. T. , "Foreword: Special
Issue on Software Reusability", IEEE Transactions on
Software Engineering , IEEE Computer Society, September,
1984.

[B0EH8?] Boehm, B. W. , Standish, T. A., "Software Technology in
The 1990 's". Appendix to Software Initiative Plan,
1982

.

[BOEH84] Boehm, B. W. , Gary, T. E.
,

Seewaldt, T., "Prototyping
Versus Specifying: A Multiproject" , IEEE Transactions
on Software Engineering . IEEE Computer Society, May,
1984.

[CHAN83] Chandersekaran, C. S., Perriens, M. P., "Towards an
Assessment of System Reusability", Proceedings Workshop
on Reusability in Programming , ITT Programming,
September, 1983.

[COR087] Coron, H. M. , Harden, J., Wong, E., "FULCRUM: A
Reusable Code Library Toolset", Proceedings of Fifth
Annual Pacific Northwest Software Quality Conference ,

Portland, Oregon, October, 1987.

[CURT84] Curtis, B., "Cognitive Issues in Reusability",
Proceedings of ITT Workshop on Reusability , ITT
Programming, September, 1983.

[DENN81] Denning, P. J., "Throwaway Programs", Communications
of the ACM . February, 1981.

[DIAZ86] Prieto-Diaz, R. , "Classification of Reusable Modules",
DoD STARS Workshop, March, 1986.

[FIPS106] "Guideline On Software Maintenance", Federal
Information Processing Standards Publication 106,
National Bureau of Standards, June, 1984.

[FISH87] Fisher, G. E. ,
"Application Software Prototyping and

Fourth Generation Languages", NBS Special Publication
500-148, National Bureau of Standards, May, 1987.

27

[GRAYS

6

[GRABS

4

[GOUG84

[GUIMS7

[H0R0S4

[JONES

4

[JONES

6

[LANES4

[LEGAS

6

[MATSS4

tMILL56

[MUSAS5

[NEIGS3

[NISES5

Gray, M. M. , "Guide to the Selection and Use of Fourth
Generation Languages", NBS Special Publication 500-143,
National Bureau of Standards, September, 1986.

Grabow, P. C., "Reusable Software Implementation
Technology Review", Hughes Aircraft Company, 1984.

Goguen, J. A., "Parameterized Programming", IEEE
Transactions on Software Encrineerinq , IEEE Computer
Society, September, 1984.

Guimaraes, T., "Prototyping: Orchestrating for
Success", Datamation . December, 1987.

Horowitz, E. W. , "An Expansive View of Reusable
Software", IEEE Transactions on Software Encfineering ,

IEEE Computer Society, September, 1984.

Jones, T. C. , "Reusability In Programming: A Survey Of
The State Of The Art" , IEEE Transactions on Software
Encfineering , IEEE Computer Society, September, 1984.

Jones, T. C, Programming Productivity ^ McGraw-Hill
Book Company , 198 6.

Lanergan, R. G. , "Software Engineering with Reusable
Design and Code", IEEE Transactions on Software
Engineering , IEEE Computer Society, September, 1984.

Lecarme, O. , Gart, M.P., Software Portability , McGraw-
Hill Book Company, 198 6.

Matsumoto, Y., "Some Experience in Promoting Reusable
Software: Presentation in Higher Abstract Levels", IEEE
Transactions on Software Engineering , IEEE Computer
Society, September, 1984.

Miller, G. A. , "The Magical Number Seven Plus or Minus
Two", Psychological Review . 1956.

Musa, J., "The Expert Outlook", IEEE Spectrum . January,
1985.

Neighbors, J. M. , "The Draco Approach to Constructing
Software from Reusable Components", Proceedings of ITT
Workshop on Reusability in Programming , September,
1983.

Nise, N. , Mckay, C. , Dillehunt, D. , Kim, N. , and
Giffin, C, "A Reusable Software System", Proceedings
of the AIAA/ACM/NASA/IEEE Computers in Aerospace V
Conference . Long Beach, CA, October, 1985.

28

[NISE86] Nise, N. , Giffin, C, , "The Design For Reusable Software
Commonality", DoD STARS Workshop, March, 1986.

[PARN83] Parnas, Clements, and Weiss, "Enhancing Reusability
With Information Hiding", Proceedings of ITT Workshop
on Reusability in Programming , Newport, RI, September,
1983.

[RAUC83] Rauch-Hindin, W. B. , "Reusable Software", Electronic
Design , February, 1983.

[SOL084] Soloway, E., "Empirical Studies of Programming", IEEE
Transactions on Software Engineering , September, 1984.

[SIM087] Simos, M. , "Alternative Technologies for Software
Reusability", DoD STARS Workshop, March, 1986.

[SILV85] Silverman, B. G. , "Software Cost and Productivity
Improvements: An Analogical View", IEEE Computer

^ May,
1985.

[STAN83] Standish, T. , "Software Reuse", Proceeding of ITT
Workshop on Reusability in Programming , Newport, RI,
September, 1983.

[TRAC79] Tracz, W.
,

"Computer Programming and the Human Thought
Process", Software Practice and Experience , Vol. 9,
1979.

[TRAC87] Tracz, W. , "Software Reuse: Motivators and Inhibitors",
Paper Number CH2409-1/87/0000/0358501 . 00 IEEE 1987.

[USAF83] USAF Scientific Advisory Board, "Report on the High
Cost and Risk of Mission-Critical Software", December,
1983.

[WEGN83] Wegner, P., "Varieties of Reusability", Proceedings of
ITT Workshop on Reusability in Programming , September,
1983 .

[WONG86] Wong, W. , "A Management Overview of Software Reuse",
NBS Special Publication 500-142, National Bureau of
Standards, Gaithersburg, MD, September, 1986.

29

GLOSSARY

algorithm - a finite set of well-defined rules that gives a
sequence of operations for performing a given task.

applications software - software which performs a specific task
such as word processing, spread sheet analysis, etc. (compare
with system software)

.

compiler - a computer program which translates a high order
language program into machine language which can be executed by
the central processing unit.

component - a basic part of a system or computer program [*]

.

custom software - software specially developed for an individual
application.

design methodology - a systematic approach to creating a design,
consisting of the ordered application of a specific collection of
tools, techniques, and guidelines [*]

.

design specification - a specification that documents how a
system is to be built. It typically includes system or component
structure, algorithms, control logic, data structures, data set
use information, input/output formats, and interface descriptions
[*].

development environment - a systematic approach to the creation
of software with a set of integrated tools to support the
software development lifecycle. The environment includes support
tools for requirements and specifications, designing, editing,
compiling, testing, configuration management, documentation, and
project management.

development methodology - a systematic approach to the creation
of software that defines development phases and specifies the
activities, products, verification procedures, and completion
criteria for each phase [*].

domain analysis - a generalization of system analysis in which
the objective is to identify the operations and objects (e.g.,
design, component, specification, requirement, development
method, etc.) needed to specify information processing in a

particular application domain.

[*] - Adapted from IEEE Standards Glossary of Software
Engineering Terminology (IEEE Std. 729) for consistency
of definition.

30

documentation - technical data, including computer listings and
printouts in human-readable form which 1) document the design or
details of the software, 2) explain the capabilities of the
software, or 3) provide operating instructions for using the
software to obtain the desired results from computer equipment.
It also includes program listings or technical manuals describing
the operation and use of programs.

evolutionary prototyping - a software lifecycle based on the
development of successive prototype systems to validate
requirements and to expressly evolve into a delivery system
[NBS148]

.

integration - the process of combining software components,
hardware components, or both into an overall system [*]

.

interface - 1) a shared boundary between software modules and/or
systems; 2) a hardware component which links two or more devices;
3) that function of a computer program which presents information
to an operator and accepts user responses.

methodology - a well-defined development process that provides
for controlled and orderly progress toward completion of a
software system that meets all specified requirements within
specified budget and schedule contraints.

module - a well defined section of a computer program with a
specific function.

requirements specification - a specification that documents the
requirements of a system or system component. It includes
functional requirements, performance requirements, interface
requirements, design requirements, and development standards [*].

simulation - the representation of selected characteristics of
the behavior of one physical or abstract system by another
system. In a digital computer system, simulation is done by
software [*]

.

software engineering - the systematic approach to the
development, operation, maintenance, and retirement of software
[*].

[*] - Adapted from IEEE Standards Glossary of Software
Engineering Terminology (IEEE Std. 729) for consistency of

definition.

31

software lifecycle - the period of time that starts when a
software product is initiated and ends when a product is no
longer available for use. A software lifecycle typically
includes phases denoting activities such as initiation,
requirements analysis, design, implementation, test,
installation, operation, and maintenance.

software product - software that has been developed, tested, and
documented to a level suitable for delivery to a customer.

software tools - packages, computer programs, and computer
systems used to help design, develop, test, analyze, or maintain
computer programs, data, and information systems. Examples
included high order languages, data base management systems,
requirement analyzers, statistical analysis packages, and
application generators.

validation - determination of the correctness of the final
program or software produced from a development project with
respect to the user needs and requirements [NBS75] . Validation
is usually accomplished by verifying each stage of the software
development lifecycle.

verification - in general, the demonstration of consistency,
completeness, and correctness of the software at each stage, and
between each stage, of the development lifecycle [NBS75]

.

X-Windows - The X-Windows Systems was developed at the
Massachusetts Institute of Technology to provide high-
performance/high-level device-independent graphics capability
supporting a windowing interface on UNIX systems.

32

NBS-114A (REV. 2-ec)

U.S. DEPT. OF" C OMM.

BIBLIOGRAPHIC DATA
SHEET ^See instructions)

1. PUBLICATION OR
REPORT NO.

NBS/SP-500/155

2. Performing Organ, Report No. 3. Publication Date

April 1988

4. TITLE AND SUBTITLE

Computer Science and Technology: Management Guide to Software Reuse

5. AUTHOR(S)

Wil 1 iam Wong

6. PERFORMING ORGANIZATION (If joint or other than NBS. see instructions)

NATIONAL BUREAU OF STANDARDS
DEPARTMENT OF COMMERCE
WASHINGTON, D.C. 20234

7. Contract/Grant No.

8. Type of Report & Period Covered

Final

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (Street. City, State. ZIP)

Same as item 6.

10. SUPPLEMENTARY NOTES

Library of Congress Catalog Card Number 88-600528

Document describes a computer program; SF-185, FlPS Software Summary, is attached.

11. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a si gnificant

bibliography or literature survey, mention it here)

This document, the second in a series on software reuse, focuses on the improvement of

productivity and quality of software as well as the reduction of software risks. Soft-

ware reusability can provide substantial economic benefits. Initial reusability efforts

should emphasize an understanding of the concept of software reuse, and encourage the

use of existing well -developed software specifications, designs, methods, techniques,

tools and other reusable information. This report presents general management

guidance in software reuse. While there is no magic solution to the problem of achiev-

ing the goals of software reuse, the report discusses various aspects, problems,

issues, and economic reasons of software reuse, and identifies those techniques and

characteristics which will assist management in improving software reuse.

12. KEY WORDS (S/x to twelve entries; alphabetical order; capitalize only proper names; and separate key words by semicolon s)

Domain knowledge; reusable software library; software acquisition; software classifi-

cation; software commonality; software component; software factory; software manage-

ment; software portability; software reusability; software reuse; software risks.

13. AVAILABILITY

pnq Unlimited

I I

For Official Distribution. Do Not Release to NTIS

^Cx| Order From Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.

20402.

I I

Order From National Technical Information Service (NTIS), Springfield, VA. 22161

14. NO. OF
PRINTED PAGES

38

15. Price

USCOMM-DC 6043-P80

ANNOUNCEMENT OF NEW PUBLICATIONS ON
COMPUTER SCIENCE & TECHNOLOGY

Superintendent of Documents,

Government Printing Office,

Washington, DC 20402

Dear Sir:

Please add my name to the announcement list of new publications to be issued in the

series: National Bureau of Standards Special Publication S0O-.

Name

Company

Address

City State Zip Code

(Notiflcadonkey N-503)

*U.S. Government Printing Office : 19S8 - 201 -597/82 5 58

Technical Publications

Periodical

JoumaJ of Research—The Journal of Research of the National Bureau of Standards reports NBS research

and development in those disciplines of the physical and engineering sciences in which the Bureau is active.

These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad

range of subjects, with major emphasis on measurement methodology and the basic technology underlying

standardization. Also included from time to time are survey articles on topics closely related to the Bureau's

technical and scientific programs. Issued six times a year.

Nonperiodicals

Monographs—Major contributions to the technical literature on various subjects related to the Bureau's scien-

tific and technical activities.

Handbooks—Recommended codes of engineering and industrial practice (including safety codes) developed in

cooperation with interested industries, professional organizations, and regulatory bodies.

Special Publications—Include proceedings of conferences sponsored by NBS, NBS annual reports, and other

special publications appropriate to this grouping such as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables, manuals, and studies of special interest to physicists,

engineers, chemists, biologists, mathematicians, computer programmers, and others engaged in scientific and
technical work.

National Standard Reference Data Series—Provides quantitative data on the physical and chemical properties

of materials, compiled from the world's literature and critically evaluated. Developjed under a worldwide pro-

gram coordinated by NBS under the authority of the National Standard Data Act (Public Law 90-3%).

NOTE: The Journal of Physical and Chemical Reference Data (JPCRD) is published quarterly for NBS by
the American Chemical Society (ACS) and the American Institute of Physics (AIP). Subscriptions, reprints,

and supplements are available from ACS, 1155 Sixteenth St., NW, Washington, DC 20056.

Building Science Series—Disseminates technical information developed at the Bureau on building materials,

components, systems, and whole structures. The series presents research results, test methods, and perfor-

mance criteria related to the structural and environmental functions and the durability and safety

characteristics of building elements and systems.

Technical Notes—Studies or reports which are complete in themselves but restrictive in their treatment of a

subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject

area. Often serve as a vehicle for final reports of work performed at NBS under the sponsorship of other

government agencies.

Voluntary Product Standards—Developed under procedures published by the Department of Commerce in

Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized re-

quirements for products, and provide all concerned interests with a basis for common understanding of the

characteristics of the products. NBS administers this program as a supplement to the activities of the private

sector standardizing organizations.

Consumer Information Series—Practical information, based on NBS research and experience, covering areas

of interest to the consumer. Easily understandable language and illustrations provide useful background

knowledge for shopping in today's technological marketplace.

Order [he above NBS publications from: Superintendent of Documents, Government Printing Office,

Washington, DC 20402.

Order the following NBS publications—FIPS and NBSIR 's—from the National Technical Information Ser-

vice, Springfield, VA 22161.

Federal Information Processing Standards Publications (FIPS PUB)—Publications in this series collecti\el\

constitute the Federal Information Processing Standards Register. The Register serves as the official source of

information in the Federal Government regarding standards issued by NBS pursuant to the Federal Property

and Administrative Services Act of 1949 as amended. Public Law 89-306 (79 Stat. 1 127), and as implemented

by Executive Order 1 1717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal

Regulations).

NBS Interagency Reports (NBSIR)—A special series of interim or final repons on work performed by NBS
for outside sponsors (both government and non-government). In general, initial distribution is handled b\' the

sponsor; public distribution is by the National Technical Information Service, Springfield, VA 22161, in paper

copy or microfiche form.

U.S. Department of Commerce
National Bureau of Standards

Gaithersburg, MD 20899

Official Business

Penalty for Private Use $300

Stimulating America s Progress

1913-1986

